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DNA purity represents a major challenge to investigate food authenticity of canned products due to DNA
degradation. Herein, we present a low-cost protocol to increase concentration and purity of DNA extracted from
canned samples. The experiment mainly consists of: (1) drying the canned tissue in paper filter, (2) washing it
with a PBS solution, (3) store in ethanol 96 % at —20°C, and (4) perform DNA extraction. The pre-treated
samples showed an increase of both DNA concentration and purity (A260/A280 ratio), indicating that some
of the inhibiting molecules were successfully removed. These differences between the two treatments were
statistically significant (p < 0.01). At the amplification level, the pre-treatment allowed the recovery of complete
fragments of the barcode region COX1 with approximately 650 bp. Since obtaining relevant levels of DNA purity
and concentration from degraded samples, and the sequencing of large fragments from processed samples rep-
resents a difficult task, the presented results demonstrate a positive effect of the proposed protocol. Thus, the
combination of this treatment with other methodologies, such as mini-barcoding, and sample types is strongly

encouraged.

1. Introduction

Tuna meat represents a widely important seafood product, especially
used by canning industry, which involves several steps, such as filleting,
freezing, defrosting, cooking, and canning (Pecoraro et al., 2020; FAO,
2024). The morphological mischaracterization makes traditional species
identification impossible, favoring the mislabeling occurrence (Wong &
Hanner, 2008; Hellberg & Morrissey, 2011; Xing et al., 2020; Zhao et al.,
2024), such as substitution of high for lower-values species, or illegal
commerce of endangered species (e.g. Pardo & Jiménez, 2020; Eppley &
Coote, 2025; Zhang et al., 2025).

In this context, molecular methods represent suitable tools, by using
specific primers set to amplify target DNA regions through PCR (Poly-
merase Chain Reaction), especially the DNA barcode (Cytochrome c
Oxidase Subunit I; COXI gene), which is the most traditional DNA-based
method for fish identification (Hebert et al., 2003; Rey et al., 2023;
Sharrad et al., 2023). However, obtaining high-purity DNA is a
pre-requisite for DNA-based methods (Xiong et al., 2019; Tumerkan,
2022) that looks forward to adequate information. Due to the high

number of processing steps and the uses of several substances for
long-term preservation, the DNA is fragmented into small pieces, many
of them uninformative (Rasmussen et al., 2009; Pecoraro et al., 2020),
making the obtention of good DNA a major challenge to studies that
used using processed samples (Armani et al., 2014).

Different methodologies have been developed for fish products
authentication, such as real-time PCR (Servusova, Piskata,2021),
PCR-RFLPs (Mata et al., 2020), Mid infrared spectroscopy (Boughattas &
Karoui, 2021), and Multiplex PCR (Lee et al., 2022). However, several
studies have documented lower success rates (0-39 %) in amplifying
large fragments from canned products when compared to others pro-
cessed products (e.g. Shokralla et al., 2015; Pollack et al., 2018; Sultana
et al, 2018; Xing et al. 2020; Roungchun et al., 2022). Thus, the
mini-barcode strategies, by amplifying shorter fragments (100-200 bp),
have been adopted to identify species from processed samples. None-
theless, despite presenting a higher success rate than full barcodes (50 %
and 39 %, respectively; Pollack et al., 2018), this size-reduction of ge-
netic information can make difficult the differentiation of closely related
species, such as tunas (Bucklin et al., 2011).
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Until now, few studies have focused on amending this problem by
optimizing the first and most crucial step in DNA authentication
methods: DNA recovery (e.g., Faraji et al., 2017; Xiong et al., 2019).
Thus, we tested an additional and cost-effective pre-treatment to recover
DNA from canned tuna, using a common DNA Extraction Kit from tissue
samples, aiming to remove their contaminants, to increase the DNA
concentration and purity and improve work routines with processed
food samples.

2. Material and methods
2.1. Sample collection, pre-treatment and DNA extraction

The pre-treatment protocol consists of two main steps described
below and in Fig. 1. From each canned product, two-three samples were
collected. The third step is a conventional tool to preserve tissue samples
for molecular procedures.

(1) Step 1: Drying — Before the DNA extraction with traditional tissue
kits, approximately 50 mg of canned meat were air-dried in filter
paper for 10 (ten) minutes to remove part of the solution used to
preserve the canned meat. This amount of tissue is based on the
indicated by commercial DNA extractions Kits (10-20 mg).

(2) Step 2: Washing - Using a sterilized clamp, the dried samples
were transferred to a 1.5 mL microtube and mixed with
500-700 pL (Note that a higher volume could be required
depending on the sampled tissue size. But it is important that the
entire sample be submerged in the solution) of Phosphate Buff-
ered Saline (1X; pH 7.2; Composition: NaCl 137 mM, KCl 2.7 mM,
Nap,HPO4 10 mM, KH,PO4 1.8 mM; PBS — Termofisher Scienti-
fic®, Gibco™ PBS) using the vortex for 10-15 s. A mechanical
mixture could be used in the absence of vortex equipment.

The mixture was centrifuged at room temperature (25-27°C)
for 10 (ten) minutes with a maximum speed of 13,000 rpm (or
17,000 xg). The supernatant discarded using a sterilized pipette
tip. This second step was repeated three times, and a final
centrifugation was performed in the same conditions described
above. The decantation method could be used in this step if the
centrifuge equipment is absent.

(3) Step 3: Preserving — After the final centrifugation and discharging
of the supernatant, the tissue was transferred to a sterile cryotube
or a 1.5 mL microtube containing a sufficient volume of 96 %
ethanol to cover the entire sample and stored at —20°C.

We recommend leaving the samples resting for at least 24 h before
proceeding with the DNA extraction. Ethanol is responsible for dehy-
drating the tissue samples, reducing DNA solubility, especially at low
temperatures.

The DNA was extracted using the PureLink™ Genomic DNA Mini Kit
(Invitrogen™ Life Technologies®) following the manufacturer’s in-
structions. The nano spectrophotometer Nanodrop 2000 was used to
quantify the DNA [concentration (ng/uL) and purity (A260/A280
ratio)].

To compare the efficiency of this methodology, the DNA was
extracted from canned samples without the pre-treatment, using the
same DNA extraction Kit and instructions. Samples labeled from PS1-
PS13 represent the pre-treated, and those from NS14-NS26 represent
non-pre-treated samples. In addition, we included concentration and
purity data from non-processed samples (fin and tissue) collected from
skipjack tuna Katsuwonus pelamis, as a positive control. These samples
were stored in ethanol 96 % at —20°C and labelled as KP1-KP13
(Supplementary Table S1).

2.2. Amplification and sequencing

The full-length COXI barcode region was amplified through PCR
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Fig. 1. Pre-treatment scheme to extract DNA from canned tuna.
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using two universal Fish primers pairs described by Ward et al. (2005):
FishF1 (5TCAACCAACCACAAAGACATTGGCAC3) and FishR1l (5
TAGACTTCTGGGTGGCCAAAGAATCA 3", and FishF2 (5 TCGAC-
TAATCATAAAGATATCGGCAC 3') and FishR2 (5" ACTTCAGGGTGACC-
GAAGAATCAGAA 3). All reactions were prepared with a final volume of
25 uL containing: 12.5 pL of 2X Taq Pol Master Mix (Cellco®), 0.5 pL of
each primer (10 mM), 0.5 pL of magnesium chloride (50 mM), 2 pL of
genomic DNA (40 ng/uL), and 9 pL of ultrapure water. The amplifica-
tion cycle was modified from Ward et al. (2005): 94°C for 2 min, fol-
lowed by 35 cycles at 94°C for 30 s, 52°C for 40 s, 72°C for 1 min, and a
final extension at 72°C for 10 min. To improve the quality of the frag-
ments, we tested the addition of 0.2 uL of Taq Polymerase (Cellco®) and
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higher DNA volume (4 pL). The samples were visualized in 1.8 % elec-
trophoresis agarose gel, purified using the Nucleosap (Cellco®)
following the manufacture instructions, diluted to 20 ng/uL, and
sequenced in the ABI 3500 automatic sequencer (Applied Biosystems).

The electropherogram profiles were visualized using BioEdit v.7.0
software (Hall, 1999) The species identification was confirmed through
the degree of similarity obtained by the Nucleotide Basic Local Align-
ment Search Tool (BLASTn) in National Center for Biotechnology In-
formation (NCBI; https://www.ncbi.nlm.nih.gov/).

2.3. Statistical analysis

To test for the data normality and homogeneity of the concentration
and purity values, the Shapiro-Wilk (Shapiro & Wilk, 1965) and the
Levene tests (Levene, 1960) were performed using the ‘tidyverse’
package in ‘R’ (R et al., 2017; https://www.R-project.org/), considering
p < 0.05.

Both Shapiro-Wilk and Levene tests showed a p-value lower than
0.05 (p =0.0017 and p = 0.00016, respectively), rejecting the null
hypothesis of data normality and homogeneity for concentration data.
Thus, we performed a non-parametric test of Kruskal-Wallis (Kruskal &
Wallis, 1952) using the ‘tidyverse’ package in ‘R’ (Core Team., 2017;
https://www.R-project.org/) to investigate if the differences between
pre-treated and non-pre-treated was significant followed by the pairwise
Wilcoxon test (Wilcoxon, 1945) under the Bonferroni correction (Rice,
1989).

For purity data, both Shapiro-wilk and Levene tests showed a p-value
higher than 0.05 (p = 0.057 and p = 0.086, respectively), accepting the
null hypothesis of data normality and homogeneity. Thus, we performed
a parametric ANOVA analysis (Kaufmann & Schering, 2007) using the
‘tidyverse’ package in ‘R’ (Core Team., 2017; https://www.R-project.
org/). To compare the purity and concentration data among muscle/-
fin, pre-treated and non-pre-treated samples, a post-hoc test of Dunn
(Dunn, 1964) was performed by using the ‘FSA’ package in ‘R’ (R et al.,
2017; https://www.R-project.org/).

To further validate the robustness of the protocol, a post-hoc power
analysis was performed, assessing the adequacy of the sample size in
detecting the observed effects. Based on the normality results and sta-
tistical tests used, purity data were investigated by though ‘pwr’ package
(Champely et al., 2017) in R (R et al., 2017; https://www.R-project.org/
), using the ANOVA observed results. Since Kruskall-Wallis is a
non-parametric test, an estimation was constructed by using chi-squared
statistic in R. In addition, the confidence intervals of both measurements
(concentration and purity) were calculated.

3. Results and discussion

DNA extracted from muscle and fin samples obtained directly from
fish specimens of Katsuwonus pelamis presented higher concentrations
and purity ranges than canned samples (Supplementary Figure S1). In
addition, fin/muscle samples also showed smaller deviation in purity
ranges than canned samples, indicating the negative effect of the can-
ning process in DNA quality. The differences between the treatments
were significant by Kruskall-Wallis test (p < 0.001), and the Dunn test
indicated that the highest differentiation was observed between muscle/
fin and non-pre-treated samples (p < 0.001; Z statistic=>5.8). Pre-treated
and non-pre-treated samples also presented significant values
(p < 0.01), and these results will be discussed separately.

Most of the DNA extracted from pre-treated samples presented
higher concentration values, ranging from 27.2 ng/uL to 94.3 ng/uL
(average = 59.28; CI 95 % 35.2-84.1), when compared to non-pre-
treated samples which presented a concentration at least around 10
times lower, ranging from 2.1 ng/pL to 29 ng/uL (average = 9.67; CI
95 % 5.1-9.7). In addition, the results of Kruskal-Wallis test showed a
significant difference (p < 0.01) in the concentration values between
the two treatments, indicating a positive effect of the pre-treatment. The
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13 samples per treatment presented a large estimated effect (f=0.88),
resulting in a power above 99 %, reinforcing the sensitivity to detect the
treatment effects.

The A260/A280 ratio represents DNA purity, being a critical
parameter in evaluating the DNA recovering success. Pre-treated sam-
ples presented a A260/A280 ratio that ranged from 1.42 to 2.05
(average = 1.81; CI 95 %, 1.69-1.93) (Table 1; Fig. 2). To consider the
DNA as uncontaminated, the A260/A280 ratio should ideally range from
1.8 to 2.0 (Chang et al., 2016). Outliers’ values could indicate contam-
ination by proteins, RNA, or residual presence of salt, phenol or carbo-
hydrates (Armani et al., 2014). Importantly, 8 of the 13 pre-treated
samples analyzed presented values of absorbance higher than 1.8,
indicating that the substances added during the canning process were
successfully removed. In contrast, the A260/A280 ratio showed lower
values when DNA was extracted from non-pre-treated samples, ranging
from 1.38 to 1.67 (average = 1.52; CI 95 % 1.45-1.59). The differences
between the treatments were statistically supported by ANOVA
(p < 0.01) and they do indicate an interesting innovation offered by the
present protocol focused on recovering better DNA quality. To assess the
adequacy of the sample size, a post-hoc power analysis was conducted
using the observed effect size from ANOVA (f=0.90). This analysis
revealed a requirement of a minimum of 6 samples per treatment to
achieve 80 % power at a p < 0.05. Since the present data with 13
samples per treatment achieved a power of 99.3 %, this indicated a
highly sensitive design to detect the improvement of the DNA purity
when the treatment was used.

These comparative results indicate that both DNA concentration and
purity were increased after the pre-treatment application. Although
many studies indicate negative effects of the canning process in DNA
quality (e.g. Shokralla et al., 2015; Cutarelli et al., 2018; Pollack et al.,
2018; Sultana et al., 2018), they lack information on DNA concentration
and purity, making direct comparison with the data obtained herein
impossible. Despite A260/A280 ratio outside the 1.8-2.0 range may
have negative effects on PCR, we stepped forward with both types of
recovered DNAs: with and without pre-treatment.

Amplifications using the FishF1/FishR1 primers pair successfully
amplify fragments of 650 bp in eight (PS1-PS8) pre-treated samples. Of
those, four samples (PS1-PS4) presented well defined bands in agarose
gel (Fig. 3). The remaining five samples presented only non-specific/low
bands in agarose gel. FishF2/FishR2 primers pair failed to amplify any
fragments. Since both primers-set represents are universal primers for
COXI amplification in fishes’ species, it would be interesting testing
different annealing temperatures to optimize their use.

The PCRs reactions using non-pre-treated samples failed in ampli-
fying any fragment using both FishF1/FishR1 and FishF2/FishR2
primers set. In these cases, reactions with higher DNA volume and
additional Taq Polymerase were tested, but the results remained nega-
tive. The negative control did not show any DNA bands in agarose gel,
indicating that no contamination had occurred during the PCR re-
actions. It is important to say that the occurrence of some failures during
the molecular routine is normal. However, comparisons among pre-
treated and non-pre-treated samples in terms of COXI-based PCR per-
formances, suggest that positive amplifications are not random and
highlight the importance of the pre-treatment protocol proposed in the
present study.

Although represented by a small number of samples (N = 8), the
positive amplifications represent a striking result, given the difficulty in
obtaining large fragments from degraded DNA shown by other studies,
especially from processed samples like canned tuna (Shokralla et al.,
2015; Sultana et al., 2018; Xing et al., 2020). Alternatively, these studies
used the mini-barcode strategy, amplifying shorter fragments of
100-200 bp. However, even shorter fragments present a lower success
rate in canned products when compared to other products (Pollack et al.,
2018; Xing et al., 2020). Thus, the combination of the pre-treatment
described herein, improving the DNA purity, and the amplification of
mini-barcode regions is encouraged. However, it is important to
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Table 1
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Sample information and molecular results of canned tuna samples. In the PCR column, the ‘\/ > symbol represents positive amplifications, and the ‘X’ symbol represents

negative amplifications. (C: DNA concentration in ng/uL).

Sample information DNA extraction PCR  Purification Sequencing (fragment BLAST percent identity
a
Sample Product label Pre- C Aseo/ C (ng/ Aseo/ length)
D description treatment (ng/ Asgo uL) Asgo
uL)
PS1 Natural solid Tuna v 35.2 1.42 v 518.3 1.20 v (683 bp) Katsuwonus pelamis (96.35-98.99 %)
PS2 Natural grated Tuna v 52.8 1.93 v 535.7 1.19 X -
PS3 Natural grated Tuna v 27.1 1.69 v 567.5 1.22 v (682 bp) Katsuwonus pelamis (88-92 %)
PS4 Natural grated Tuna v 94.3 1.55 v 624.7 1.21 v (681 bp) Katsuwonus pelamis (97.64-98.77 %)
PS5 Natural grated Tuna v 41.2 1.70 v 533.8 1.18 v (673 bp) Katsuwonus pelamis (98.19-99.27 %)
PS6 Natural solid Tuna v 75.3 1.82 X - - - -
PS7 Natural solid Tuna v 84.1 1.99 X - - - -
PS8 Natural solid Tuna v 84.6 2.05 X - - - -
PS9 Natural solid Tuna v 82.9 2.04 X - - - -
PS10 Natural solid Tuna v 30.5 1.84 X - - - -
PS11 Natural solid v 52.1 2.02 v 332.1 1.14 X -
Yellowfin Tuna
PS12 Natural solid v 32.4 1.91 v 390.8 1.21 X -
Yellowfin Tuna
PS13 Natural solid v 78.2 1.6 v 476.1 1.24 v (228 bp) The fragment obtained did not allow the
Yellowfin Tuna BLASTn procedure
NS14 Natural solid Tuna X 5.1 1.6 X - - - -
NS15 Natural solid Tuna X 4.5 1.6 X - - - -
NS16 Natural solid Tuna X 12.6 1.42 X - - - -
NS17 Natural solid Tuna X 8.6 1.56 X - - - -
NS18 Natural solid Tuna X 2.1 1.38 - - - -
NS19 Natural solid Tuna X 5.8 1.42 X - - - -
NS20 Natural solid Tuna X 8.2 1.55 X - - - -
NS21 Natural solid Tuna X 9.7 1.7 X - - - -
NS22 Natural solid Tuna X 8.3 1.65 X - - - -
NS23 Natural solid Tuna X 6.4 1.67 X - - - -
NS24 Natural solid Tuna X 2.5 1.48 X - - - -
NS25 Natural solid Tuna X 229 1.37 X - - - -
NS26 Natural solid Tuna X 29 1.38 X - - - -
@ Length before editing and alignment
A B ;
*% *%*
e p<0.01 . N p<0.01 .
3 ° s
2 o
E 504 - 2
'45 . % 1.7 1 | s
‘GE’ ©
i )
O 254
1.5
E—— i
O -

Non—pré—treated Pre—'treated

Treatment

Non—pré—treated Pre—ltreated

Treatment

Non-pre-treated

@ Pre-treated

Fig. 2. DNA quantification parameters of (A) DNA concentration (ng/uL) and (B) DNA A260/A280 ratio among pre-treated and non-pre-treated samples. ** Sig-

nificance at the 0.01 level, as calculated using Kruskal-Wallis and Wilcoxon tests.

highlight that, even when higher purity DNA was used, the DNA frag-
mentation of the canned samples made it impossible to amplify large
regions in some pre-treated samples.

Except for the PS2, PS11 and PS12 samples, the sequencing of the
pre-treated samples provided good quality sequences. The electrophe-
rograms presented only a few non-identified nucleotides in the

beginning of the sequence, which is normally expected in Sanger
sequencing. The base peaks were well defined, and the fragment lengths
ranged from 673 bp to 682 bp (Table 1), showing that the full COXI
barcode region was obtained. This result allowed the identification of
the skipjack tuna (Katsuwonus pelamis), in the canned products analyzed.
An ambiguous sequence of 228 bp was obtained from the PS13 sample
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Fig. 3. Agarose gel showing positive amplifications of the COXI gene from pre-treated samples. (-Cont: negative control).

and, for that, the BLASTn tool failed in identifying the similarities in the
database.

Nagalakshmi et al. (2016) investigated the species authenticity of
different sample types (fresh, frozen, canned, ready to cook, and ready to
eat) and they found that the canned tuna presented the lowest amplifi-
cation length (200-300 bp) when compared to the other samples
(550-650 bp), as observed by Pollack et al. (2018). Due to the low DNA
purity, which can make the amplification throughout PCR and
sequencing steps in terms of identifying species from processed meat
samples difficult, the improvement of DNA concentration and purity,
plus the sequencing of the full barcode COXI region, even in few sam-
ples, highlights the importance of the protocol proposed and tested
herein.

4. Conclusions

Overall, the protocol offered herein showed significant improve-
ments of both DNA concentration and purity from canned tuna samples
when compared to those non-pre-treated. These improved results
enabled complete COXI amplification in eight pre-treated samples. Of
these, we obtained complete COXI sequences for four of the total thir-
teen samples. This represents a remarkable result since several studies
have revealed the low success of the DNA-based species identification
methods carried out on products from different processes, especially
canning. However, it is important to mention that the present study is
limited by a small sample size. In the context of food fraud investigation,
food safety and overall food certification, this study must serve as a
baseline experiment for new improved techniques concerned the
development of better strategies to identify species using degraded DNA.
In addition, the combination of the methodological improvements
offered here with other methods, such as mini barcoding, is strongly
encouraged, including other sample types in the tests.
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Glossary

DNA: Deoxyribonucleic acid

PCR: Polymerase chain reaction

PCR-RFLP: Restriction fragment length polymorphism polymerase chain reaction
COXI: Cytochrome c Oxidase Subunit I

PBS: Phosphate Buffered Saline

BLASTn: Nucleotide Basic Local Alignment Search Tool

RNA: Ribonucleic acid
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