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ARTICLE INFO ABSTRACT

The greenback parrotfish, Scarus trispinosus, is the largest herbivorous fish inhabiting Southwestern Atlantic
reefs, and was recently included in the IUCN red list of threatened species as endangered due to the over-
exploitation of their populations. The aim of this work was to evaluate the existence of structured populations
(i.e. genetic unities) along a coast of approximately 2000 km of the NE Brazilian coast. The transferability of 17
primers synthesized for Scarus rubroviolaceus was tested for S. trispinosus and five transferable loci were validated
and used. Two localities within the Abrolhos Bank, off the Central Brazilian coast (Corumbau and Caravelas) and
in close proximity to the MPA, which encompasses the largest remnants of the S. trispinosus population, exhibited
higher levels of genetic richness. Remaining locations, Pernambuco, Porto Seguro and Rio Grande do Norte
exhibited lower genetic diversity. We found no genetic differences among sampled localities however, when
those samples were gathered into latitudinal groups (northern vs southern) a subtle but significant genetic
substructuring was revealed. It is proposed that a combination of high local individual admixture favoured by
habitat connectivity drived genetic homogeneity at regional scales while larval dispersal contributed to het-
erogeneities observed at large scales maintaining gene flow through oceanographic currents.
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1. Introduction

A key process driving connectivity in marine fish populations is the
pelagic and potential dispersive larval phase (Bernardi, 2011). This
phase is essential for species to colonize new habitats and to maintain
fish populations by increasing genetic connectivity among locations
(Leis and McCormick, 2002). Oceanic currents and coastal winds dis-
play a central role in population sub-structuring of fish species (Cowen
et al.,, 2006, 2007) as they can enhance (or hinder) dispersal of in-
dividuals (Félix-Hackradt et al., 2013a). Added to these phenomena,
the migration of adults and juveniles can contribute significantly to this
homogenization (Galarza et al., 2009). On the contrary, there is in-
creasing evidence for larval retention to natal environments through

active swimming behaviour and/or local oceanographic conditions
(Swearer et al., 1999; Jones et al., 2005; Abreu et al., 2014). A detailed
understanding of such processes and on the degree of genetic variation
as evolutionary potential are crucial for the development and im-
plementation of strategies for effective management of exploited spe-
cies and the conservation of threatened fish species, as fishing pressure
and destruction of essential fish habitat can lead to genetic isolation of
populations (Craig et al., 2011; Allendorf et al., 2014; Pinsky and
Palumbi, 2014).

Genetic and demographic connectivity are highly variable at mul-
tiple spatial scales to a degree where few methodologies can elucidate
(Cowen et al.,, 2007). Contemporary genetic tools, such as micro-
satellites markers, makes it possible to study complex populations (Karl
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et al., 2012). These markers are being largely used in studies on po-
pulation dynamics due to their codominance, which combined with
their hypervariability and easy replication, makes them into ideal tools
for genomic screening and historical population relationships (Saenz-
Agudelo et al., 2009; Calo et al., 2013), including fish populations (Mai
et al., 2014; Ceballos et al., 2016). Once isolated and genotyped, is
possible to get cross-amplification on some microsatellite loci between
species very closed related (Primmer et al., 1996), and therefore re-
ducing development costs. Importantly this strategy has been largely
used to reveal its potential using in studies of fish population genetics
(Priest et al., 2015; Portnoy et al., 2016).

Parrotfishes (Labridae: Scarinae) represent the dominant group (in
numbers) among herbivorous reef fish and, together with surgeonfish
(Acanthuridae), are of significant ecological importance in tropical
seas, greatly increasing resistance and resilience of coral reef ecosys-
tems (Choat et al., 2002; Hoey and Bellwood, 2008). Their intense
feeding behaviour (Bellwood, 1994) and robust jaw apparatus allow
them to scrape and excavate the substratum and consequently shape the
habitat structure of benthic reef assemblages by controlling algal
growth and facilitating coral growth (Mumby, 2006).

The greenback parrotfish, Scarus trispinosus, is an herbivorous spe-
cies that is endemic to Brazilian coast, occurring from Santa Catarina
through Rio Grande do Norte (Floeter et al., 2005) reaching 60m deep
(Feitoza et al., 2005). This species is the largest Atlantic parrotfish
reaching 60 cm mean total length (Cardozo-Ferreira and Joyeux, 2016)
and it is a protogynous hermaphrodite (Sadovy, 2001). In terms of
exploitation, a systematic selected removal of the bigger specimens can
lead to a fast population loss of structure (Coleman et al., 2000; Sadovy,
2001). These biological and ecological characteristics combined with
overexploitation in the last 30 years due to spearfishing (Francini-Filho
and Moura, 2008), resulted in its inclusion on the international list of
threatened species of International Union for Conservation of Nature
(IUCN) as endangered. In Brazil, a ministerial order (MMA 445/2014)
from the Environmental Ministry (MMA) has forbidden fishing, landing
and commercialization of these species throughout the Brazilian terri-
tory since 2014 (Brasil, 2014). However, due to local fisher pressure, an
updated order in 2017 (MMA 161/2017) has allowed its capture and
selling until April of 2018, after which further fishing activity will be
conditioned to the implementation of recovery plans (Brasil, 2017).

Considering the aspects related to the exploitation and conservation
status of Scarus trispinosus the aim of this study was to (i) understand
and assess population sub-structuring, and (ii) evaluate population
connectivity, and (iii) assess levels of genetic diversity. These results
can be useful to outline optimal management strategies, as well as to
support the establishment of spatial management tools (such as Marine
Protected Areas) and other appropriated fisheries management mea-
sures, which respects observed connectivity patterns on this species.

2. Material and methods
2.1. Study area

Samples of S. trispinosus were collected at five locations between
2014 and 2016, encompassing a geographic range of about 2000 km of
Brazilian coast, extending from southern Bahia to Rio Grande do Norte:
Rio do Fogo/RN (N = 44), Tamandaré/PE (N = 14), Porto Seguro/
BA = 49), Corumbau/BA (N = 17) and Caravelas/BA (N = 52) (Fig. 1).

These sampling locations fall within the Brazilian tropical coast,
which goes from Maranhao to Rio de Janeiro, and it is where the main
coral reef formations are concentrated (Ledo and Dominguez, 2000).
Brazilian reef formations are especially unique, being distinguishable
from the other reef systems found in the world due to (i) the growth
structure in the form of mushrooms called “chapeirdes”, occurring in
Abrolhos, (ii) the low diversity of reef-building species composed of
relic species, but with a high degree of endemism (of the 23 coral
species in the Brazilian coast, 25% are endemic), and (iii) high
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influence of silt-elastic sediments coming from river flows (Ledao and
Dominguez, 2000).

Although there are different types of reef formations in our study
area, coastal reef benches predominate in shallow environments, which
during low tides can form lagoons that connect to each other through
meandering channels running through the dense reef structure (Ledo
et al., 2010). It is in this habitat where our target species can be found.

Additionally, adjacent to all sampling localities there was a number
of marine protected areas - Coral Reef Environmental Protection Area
(RN), Coral Coast Environmental Protection Area (PE), Natural Marine
Park of Recife de Fora (BA), Corumbau Extractive Marine Reserve (BA),
and Abrolhos National Marine Park (BA), from north to south - that
were created, among other things, to contribute for coral reef con-
servation.

It is important to emphasize that the large gap between the sampled
localities occurred because the species is currently threatened with
extinction, therefore causing difficulties to obtain the desired number of
samples in some localities (e.g. Corumbau and Tamandaré) and no
samples at all in other places, despite sampling effort applied.

2.2. Sample collection, extraction and amplification

A total of 176 samples (a piece of tissue approximately 4 cm? from
the anal fin) were obtained from local fishermen. Tamandaré
(Pernambuco) was the locality with the lowest number of individuals,
since this species is already under heavy fishing pressure, almost gone
in this state (B. P. Ferreira pers. comm.). So, although there was a great
effort, it was not possible to standardize the number of individuals
sampled. The sampled tissues were conserved in 100% ethanol alcohol
until extraction. DNA extractions were performed following the Qiagen”
DNeasy Extraction Kit protocol. To verify the DNA integrity, an agarose
gel electrophoresis (1%) was performed and DNA amount and quality
were quantified by Picodrop”.

2.3. Amplification and genotyping

A total of 17 loci primers obtained for Scarus rubroviolaceus (Carlon
and Lippé, 2007) were tested for transferability to S. trispinosus by the
cross-amplification strategy. Of the 17 loci, only five successfully am-
plified and where thus retained (Sru-A8, Sru-A7, Sru-C127, Sru-A9 and
Sru-D5 - see Carlon and Lippé, 2007). Multiplex PCRs were performed
in 11 pl total volume, which included 1pl (25-50ng) DNA, 1X KCl
buffer, 2.0 mM MgCl2, 0.08 mM of each dNTP, 0.18 mM of each primer,
0.5 U of Taq DNA Polymerase and ultrapure water. The reactions were
performed under the following conditions: 94 °C for 5’, 10 cycles of
94 °C for 30”, 60 °C for 1’ and 72 °C for 90”, followed by 30 cycles of
94 °C for 30”, 48 °C for 1/, 72 °C for 90” and a final extension of 72 °C for
10' (Gramacho et al., 2007). A 2 ul sample of each PCR product was run
on 2% agarose gel stained with Gel RedTM/Uniscience and visualized
under UV light. The PCR products of the duplex and triplex reactions
were diluted 1:30 with ultrapure water. Subsequently, 1 pl of this
mixture was diluted by adding 9 upl Liz-HiDi solution (0.2 pl
Liz500 + 8.8 pl HiDi). The product of the amplifications was analysed
on ABI 3500° Genetic Analyzer/Applied Biosystems. Allele scoring was
performed using GeneMarker (Softgenetics, State College, PA, USA). A
base genotype was used in all races as reference to avoid biased alleles.
Alleles were sized and labelled by comparison to the genescan-500 LIZ
internal size standard (Applied Biosystems, Inc.).

2.4. Data analysis

The total number of alleles (A) and private alleles (PA) as well ob-
served (Hp) and expected heterozygosity (Hg) (Nei, 1978) for each
locus and allele frequency were obtained with Genetix (Belkhir et al.,
2004). The fixation indexes (F) and richness (Rg) was calculated using
10,000 permutations under FSTAT v.2.9.3.2 routine (Goudet, 2002)
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Fig. 1. Map showing the localities where S. trispinosus samples were collected (zoomed in on the right with the names of the municipalities), as well as the continental
shelf width. The gray painted states represent the geographic distribution of the specie in Brazil. Marine Protected Areas are represented by dark blue area in the map:
Coral Reef Environmental Protection Area (RN), Coral Coast Environmental Protection Area (PE), Natural Marine Park of Recife de Fora (BA), Corumbau Extractive
Marine Reserve (BA), and Abrolhos National Marine Park (BA). Finally, the arrows represent ocean currents directions that influence the dynamics of coastal
circulation. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)

following Weir and Cockerham (1984) and Gaggiotti et al. (1999).
Furthermore, the presence of null alleles was confirmed by re-amplifi-
cations, following the same parameters of the previously analyses, in
which all defective reactions were again amplified alongside a reference
genotype that always performed correctly. Nevertheless, FreeNa
(Chapuis and Estoup, 2007) was used to detect existing null alleles, and
compare global and pairwise Fsr between our raw microsatellite data
and after excluding null alleles (ENA) procedure with 1000 bootstrap
repetitions. Deviations from Hardy-Weinberg equilibrium and estimates
of linkage-disequilibrium per locus and per locality were determined
using the randomization approach that applies Bonferroni corrections
in Arlequin (Excoffier et al., 1992, 2005).

The differentiation among the sampled populations was quantified
by pairwise Fsr and tested by 10,000 permutations with Genetix v.4.1
(Belkhir et al., 2004). Additionally, we used the program POWSIM v.4.0
(Ryman and Palm, 2006) to evaluate the statistical power of the mi-
crosatellite marker to detect genetic differentiation given the low
number of polymorphic loci used and differences on sample sizes. Si-
mulations were carried out for an effective population size of
Ne = 1000 and Ne = 500 to yield Fgy values of 0.001, 0.0025, 0.005,
0.01, 0.02, 0.025 and 0.05. The parameters of the Markov Chain were
fixed to 10,000, 1000 and 10,000 for, respectively, burn-ins, batches
and iterations per run, for a total of 1000 runs each.

In addition, for investigate gene flow between sites, we used a
Bayesian assignment test-based method implemented in BayesAss 1.3
(Wilson and Rannala, 2003). Using a Markov chain Monte Carlo
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(MCMC) procedure, the software estimates whether an individual is an
immigrant using 30 million MCMC iterations with a burn-in of 10
million steps within a 95% of confidence interval. Also, the multivariate
method DAPC (Jombart et al., 2010) was applied to identify genetic
clusters of related individuals among sampled localities using R
package adegenet. DAPC analysis was chosen instead of Structure
procedure as it makes no assumptions about underlying genetic data
structure and requires prior identification of groups using Bayesian
information criteria (BIC) to maximize between-group variance. The
alpha score was used to select the optimal number of principal com-
ponents applied in the further analysis in which 9 PCs retained 89,2% of
total genetic information (Figures A1 and A2 in Suppl. Mat. A). Finally,
analysis of molecular variance (AMOVA) in Arlequin software v.3.5.1.2
(Excoffier et al., 1992, 2005) was performed in distinct ways: i) to
evaluate the existence of genetic structure among sampled populations
and ii) to infer genetic discontinuity between northern (PE + RN) and
southern sampling localities (CA + CO + PS).

3. Results
3.1. Genetic variability

A total of 23 alleles were found in the five loci tested. The null allele
frequency per locus and population ranged from 0 to 0.207 (Table Al in
Suppl. Mat. A), that according to Dakin and Avise (2004) is considered
a rare/low frequency, and therefore we maintained all loci in further
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Table 1

Summary statistics of five microsatellite loci and overall mean of the five
sampling sites and all 176 individuals (N = number of samples, A = number of
alleles, PA = number of private alleles, Rg = allelic richness, Ho = observed
heterozygosity, Hg = expected heterozygosity, Fis = coefficient of inbreeding).
In bold significance results after Bonferroni correction.

Microsatellite loci

Locations Sru-A8 Sru-A7 Sru-C127 Sru-A9 Sru-D5 Average
Rio Grande do Norte (RN)

N 41 41 39 36 35 38.4
A 2 5 8 1 2 3.6
PA 0 0 0 0 0 0

Rs 1.268 3.002 7.074 1.000 1.974 2.863
Ho 0.024 0.219 0.820 0.000 0.142 0.241
Hg 0.024 0.226 0.838 0.000 0.227 0.263
Fis 0.000 0.032 0.022 NA 0.375 0.107
Pernambuco (PE)

N 14 13 12 11 11 12.2
A 1 2 7 1 2 2.6
PA 0 0 0 0 0 0

Rs 1.000 1.846 6.909 1.000 2.000 2.551
Ho 0.000 0.076 0.916 0.000 0.090 0.216
Hg 0.000 0.076 0.833 0.000 0.506 0.283
Fis NA —0.054 0.290 NA 1.000 0.412
PortoSeguro (PS)

N 49 49 47 41 49 47

A 2 4 8 1 2 3.4
PA 0 0 0 0 0 0

Rs 1.224 3.035 6.946 1.000 1.979 2.836
Ho 0.020 0.285 0.680 0.000 0.081 0.213
Hg 0.020 0.260 0.836 0.000 0.247 0.272
Fis 0.000 —0.084 0.082 NA 0.697 0.173
Corumbau (CO)

N 17 17 16 17 16 16.6
A 2 4 8 1 2 3.4
PA 1 0 0 0 0 0

Rs 1.882 3.283 7.475 1.000 1.976 3.123
Ho 0 0.352 0.937 0 0.187 0.295
Hg 0.114 0.315 0.858 0 0.175 0.292
Fis 1.000 —0.122 —0.094 NA —-0.071 0.177
Caravelas (CA)

N 50 52 52 52 48 50.8
A 2 7 9 1 2 4.2
PA 0 2 1 0 0 0

Rs 1.393 5.041 6.769 1.000 1.993 3.239
Ho 0,000 0.480 0.788 0.000 0.062 0.266
Hg 0.396 0.517 0.792 0.000 0.294 0.400
Fis 1.000 0.071 0.005 NA 0.789 0.466

analysis. However, global Fgr for all loci and pairwise Fsr values were
all higher using ENA correction (Chapuis and Estoup, 2007) when
compared to ENA allele frequencies (Table 2 and Table A2 in Suppl.
Mat. A), however neither were statically significant. This suggests that
null alleles have no or minor influence on our analysis; therefore, all
further tests were performed with uncorrected allele frequencies.

The number of alleles per locus varied from 1 (Sru-A9) to 9 (Sru-
C127), being the Sru-C127 the one that contributing the most to total
gene diversity (Hg = 0.858) (Table 1). The observed average hetero-
zygosity and allelic richness were highest in Corumbau and Caravelas
(Ho = 3.123, Rg = 0.295; Hp = 3.239, Rg = 0.266, respectively). Per-
nambuco was the locality with the lowest number of alleles (14), and
together with Porto Seguro showed the lowest level of heterozygosity
(Ho = 0.216 and 0.213, respectively) (Table 1). Caravelas and Per-
nambuco had also the highest values of inbreeding coefficient (0.46 and
0.41, respectively), while the lowest one was found on individuals from
Rio Grande do Norte. There was no significant deviation from the
Hardy-Weinberg equilibrium after Bonferroni correction in any of the
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Table 2

Comparison of pairwise Fgr derived from raw microsatellite data and after
applying the excluding null alleles (ENA) correction method between sampled
localities of S. trispinosus populations. No statistical significance was found
using Bootstrap resampling over loci with 95% of confidence interval. Legend:

CA = Caravelas, CO = Corumbau, RN = Rio Grande do Norte, PE =
Pernambuco and PS = Porto Seguro.
CA Cco RN PE PS
CA - 0.0184 0.0200 0.0304 0.0240
Cco 0.018 - 0.0037 0.0093 0.0269
RN 0.020 0.003 - —0.0053 0.0038
PE 0.030 0.009 —0.005 - 0.0058
PS 0.024 0.027 0.004 —0.006

studied populations. Evidence of linkage disequilibrium was found in
two loci, Sru-A8 and Sru-C127, at Corumbau population.

3.2. Population structure

Results of the POWSIM analysis revealed that, although with few
loci, our marker had sufficient power to detected significant genetic
differentiation above a Fgy value of 0.01 with 80% of probability
(Figure A1 in Suppl. Mat. A) for both estimators used (Chi? = 0.8768
and Fisher = 0.8341).

The genetic structure among the sampled localities estimated by
global (Fgtr = 0.017; Table A2 in Suppl. Mat. A) and pairwise Fgr
showed that after null alleles correction there are no significant dif-
ferences among locations sampled (Table 2). The higher genetic dif-
ference was observed among Rio Grande do Norte/Pernambuco lo-
calities and Caravelas (Fst = 0.02 and Fgr = 0.01, respectively) and the
lowest registered between Corumbau/Porto Seguro and Rio Grande do
Norte (both presenting Fgr = 0.003).

This result could also be verified by investigating the recent mi-
gration rate per generation among the sampled locations. The average
percentage of immigrant individuals belonging to other locations varied
from 4.7% ( = 0.036 sd) to 11.9% ( * 0.067 sd) being highest between
Rio Grande do Norte and Pernambuco as source/recipient populations
respectively (Table 3). Nevertheless, all sampled localities showed ex-
pected levels of self-recipient rates (=66% of non-migrants, see Baye-
sAss documentation) in which Pernambuco locality presented the
highest proportion value, almost 75% ( * 0.057 sd) (Table 3).

Similarly, the discriminant analysis of principal components (DAPC)
showed no clear genetic clustering our data revealed by a non-reach-
able lower BIC value for different maximum number of clusters simu-
lated and low alpha scores obtained (Fig. A2 in Suppl. Mat. A). How-
ever, by determining an arbitrary cluster number (n =5) which
corresponds to 5 original localities sampled, it revealed that all inferred
clusters formed were in fact formed by individuals of all sampled lo-
calities, indicating high level of admixture (Fig A3 in Suppl. Mat. A).
AMOVA results corroborated the absence of genetic structure among S.
trispinosus sampling localities (Fst = 0.001; p = 0.959); however, when
northern vs southern localities were considered (K = 2), a low but
significant FSC value of 0.011 reveal a subtle level of sub structuring
among populations within groups tested, although 97% of the total
genetic variance occurred among the individuals within the sampled
locations (Table 4).

4. Discussion

These are the first results of population genetics of an endangered
parrotfish species at Brazilian coast. Despite belonging to the same
genus, the obtained results showed low microsatellite transferability
rate between Scarus rubroviolaceus and S. trispinosus (29,41%), resulting
only in five loci. Although the scope of our observations may be limited
due to the restricted number of markers obtained and considering the
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Table 3
The mean migration rates =+
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standard deviation [95% confidence interval] calculated by BayesAss using the microsatellite data are included for all source/recipient

population comparisons. Legend: Source populations are listed across the top row; populations receiving immigrants are listed in the left-hand column. Caravelas
(CA), Corumbau (CO), Rio Grande do Norte (RN), Pernambuco (PE) and Porto Seguro (PS). Values along the diagonal (bold) line are the self-recipient rates into the

source population.

CA sd Cco sd RN sd PE sd PS sd
CA 0.727 [0.667, 0.812] + 0.044 0.061 [0.000, 0.157] +0.049 0.056 [0.000, 0.166] + 0.052 0.052 [0.000, 0.142] + 0.044 0.049 [0.000, 0.134] =+ 0.042
CO 0.065 [0.000, 0.161] =+ 0.049 0.707 [0.666, 0.779] =+ 0.036 0.070 [0.000, 0.183] = 0.057 0.061 [0.000, 0.171] =+ 0.054 0.047 [0.000, 0.136] =+ 0.044
RN 0.075 [0.000, 0.182] + 0.055 0.091 [0.000, 0.201] + 0.059 0.705 [0.666, 0.780] + 0.037 0.080 [0.000, 0.193] =+ 0.058 0.075 [0.000, 0.185] = 0.056
PE 0.080 [0.000, 0.179] + 0.054 0.092 [0.000, 0.203] + 0.060 0.119 [0.000, 0.234] + 0.067 0.756 [0.666, 0.861] + 0.057 0.083 [0.000, 0.196] = 0.059
PS 0.050 [0.000, 0.124]  + 0.039 0.0473 [0.000, 0.122]  + 0.038 0.048 [0.000, 0.126]  + 0.040 0.047 [0.000, 0.116] =+ 0.036 0.744 [0.666, 0.837] =+ 0.051

fact that the use of cross-specific markers can cause loss of genetic di-
versity, important considerations can be made.

Samples obtained at Corumbau and Caravelas displayed higher
mean heterozygosity levels and higher allelic richness than other areas.
Those localities are inserted into Abrolhos reef bank, the largest coral
reef formation of South Atlantic Ocean. It consists of shallow (average
30 m) continental shelf which extends from Caravela's city up to 250 km
offshore (Marchioro and Nunes, 2003), in which numerous reef habitat
formations could be seen such as fringing reefs, mushroom reef type
(“chapeirdes”) (Leao et al., 2003), rhodolits beds (Amado-Filho et al.,
2012) as well large sinkholes (Bastos et al., 2013). This large amount of
preferred habitat is probably the responsible for harbouring the largest
remnant populations of S. trispinosus at Brazilian coast (Ferreira et al.,
2001; Francini-Filho and Moura, 2008), and may therefore resulted in
higher allelic richness. Population genetic analyses in two parrotfish
species from the Australian Great Barrier Reef showed a relationship
among size and diversity of habitats with higher genetic variation
(Dudgeon et al., 2000). In fact, large population sizes and habitat het-
erogeneity are known to positively influence genetic diversity in marine
fish (Mitton and Lewis, 1989).

In addition, two important Marine Protected Areas — Abrolhos
Marine Park and Corumbau Extractive Reserve, could also have influ-
enced regional genetic diversity indexes. Recent works have shown
higher genetic diversity in regions closer to fully protected areas when
compared to non-protected ones (that is, where fishing is allowed, see
Pérez-Ruzafa et al., 2006; Félix-Hackradt et al., 2013b), revealing that
MPAs are important tools to conserving ocean's genetic resources
(Arrieta et al., 2010). The results obtained herein reinforce that no-take
MPAs could act as a genetic reservoir thus contributing to enhancing
genetic diversity of neighbouring areas. Thus, the higher genetic var-
iation observed in S. trispinosus from Corumbau and Caravelas (Ab-
rolhos Marine Park) could be a combined result of larger habitat het-
erogeneity in a protected area. According to this evidence we suggest
another comparative population genetic study in fish species living at

Table 4

both restricted/large — protected/non-protected habitats in order to test
for the defended hypothesis.

On the contrary, lowest allelic number and observed heterozygosity
were found at Pernambuco and Porto Seguro localities, respectively.
These results could be an outcome of a continued process of individual
removal by fishing and consequently genetic pool erosion, facilitated by
reef proximity to the coast and the fishing gear used by fishermen, the
“speargun”. According to Nunes et al. (2012), this technique is highly
employed at Bahia state targeting mainly piscivorous fishes. However,
at southern Bahia, in which Abrolhos region is inserted, the herbivores
can contribute to 15% of total catch, which are primarily constituted of
S. trispinosus. In addition, the monitoring of landings of local fisheries at
Porto Seguro revealed that the relative importance of S. trispinosus in
total capture (in weight) ranged from 8,5-21% depending the fishery
category (DallOrto et al., 2017). This indicates great fishing pressure
over greenback parrotfish populations. In Tamandaré (Pernambuco)
however, although the species is appreciated by fishers and thus under
continued pressure, it is presently relatively rare in landings (B. P.
Ferreira pers.comm).

Several studies have shown the fishing effects on genetic diversity in
several commercially important fish species (Smith et al., 1991; Hauser
et al., 2002). Specially, in a meta-analytic survey done with 72 over-
exploited fish species, Pinsky and Palumbi (2014) evidenced that
overfishing is directly related to the population genetic diversity re-
duction. Besides, the fishing pressure targeting larger individuals can
reduce larval output and thus connectivity, since fish fecundity tends to
increase with fish body size (Birkeland and Dayton, 2005). Despite not
being the aim of this work to determine the fishing effect over the
greenback genetic diversity, it is possible to infer that if the fishing
effort over S. trispinosus populations persists, this could lead to reduc-
tion of effective population size, as showed by Previero (2014). Con-
sequently, a greater loss of important and rare alleles may occur
(Allendorf et al., 2014), reducing the resilience of greenback parrotfish
populations against disturbances such as climate changes.

AMOVA test of statistical genetic differences between northern localities and southern ones, considering K = 2 and K = 1cluster groups. Significant result (p < 0.05)

in bold. Df = degrees of freedom; SS = sum of squares.

Source of variation Df SS Variance components Variation (%) Fixation indices

K=2 Among groups 1 0.597 —0.003 —0.54 Fer = —0.005
Among populations within groups 3 2.870 0.006 1.15 Fsc=0.011
Among individuals within populations 169 94.539 0.010 1.73 Fis = 0.017
Within individuals 174 94.000 0.540 97.65 Fir = 0.023
Total 347 192.006 0.553

K=1 Among populations 1 0.474 —0.000 -0.11 Fsr = —0.001
Among individuals within populations 172 97.532 0.013 2.42 Fig = 0.024
Within individuals 174 94.00 0.540 97.69 Fir = 0.023
Total 347 192.006 0.553
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Although not significant global and pairwise Fsr values showed low
levels of genetic heterogeneity (ranging from 0.01 to 0.03) which was
consistent with moderate migrant rates found between all geographical
locations. This pattern might have been produced by the continued
admixture of individuals in which adult and juvenile phases could have
contributed to facilitate gene flow provided reef habitat continuity at
regional scales (Palumbi, 1992; Mora and Sale, 2002; Weersing and
Toonen, 2009). Studies that explored the movement patterns of several
Scaridae species (Howard et al., 2013), showed a maximum home range
of 43.000 m? for Scarus rivulatus (Welsh and Bellwood, 2012), while S.
rubroviolaceus showed high habitat fidelity and a home range of
2.500m? (Ong, 2007). These findings suggest a limited capacity of
genetic homogenization at regional and local scales through fish
movement, illustrating that larval dispersal is acting at larger spatial
scales.

Other work that investigated the genetic structure of marine fish
species were also unable of detecting significant differences among
populations along Brazilian coast (Scomberomorus cavalla, Santa Brigida
et al., 2007; Ocyurus chrysurus, Vasconcellos et al., 2008, Silva et al.,
2015; Chaetodon striatus and Pomacanthus paru, Affonso and Galetti,
2007), between coastal reefs and oceanic islands (Acanthurus chirurgus,
Rocha et al., 2002; Cephalopholis fulva, Freitas et al., 2003, Souza et al.,
2015; Neves et al., 2016), through the employment of mitochondrial
markers (lutjanids, Dias Junior et al., 2012; Pereira, 2016) and at larger
temporal scales (Cynoscion acoupa, Rodrigues et al., 2008). Never-
theless, some studies revealed genetic divergence between Brazilian
and Caribbean populations (Acanthurus bahianus and Acanthurus coer-
ulus, Rocha et al., 2002; Ocyurus chrysurus, Vasconcellos et al., 2008),
among tropical and subtropical regions (Macrodon ancylodon, Santos
et al., 2006; Epinephelus itajara, Abreu et al., 2014, Damasceno et al.,
2015; Chaetodipterus faber, Machado et al., 2017).

On the other hand, a weak but significant genetic heterogeneity was
found when grouping northern vs southern locations (Fcr = 0.01),
nevertheless more than 90% of the genetic variability relied within
individuals within their localities. One possibility is that at such scales,
larval transport is sufficient to maintain gene flow but restricted enough
to provide subtle differences. Brazil current (BC) is the main oceano-
graphic current acting at Brazilian coast which carries warm water from
equatorial region southward until Brazil-Argentina border, where it
meets the cold Malvina's current with opposite direction (Ekau and
Knoppers, 1998; Lira et al., 2010). Owing to its great extension, the BC
can be responsible for the large distance gene flow observed along
2000 km of coast, where local currents can sustain, along with adult
and juvenile movement, high regional and local admixture, carrying
fish larvae between adjacent reef systems.

Reef fish have relatively long pelagic larval duration (PLD) (~a
month) (Victor and Wellington, 2000). There is little information for
Scarinae PLD: 24 days for Scarus iserti (Clifton, 1995); between 29 and
41.8 days for five undetermined Scarus species from Okinawa, Japan
(Ishihara and Tachihara, 2011); and larger mean PLD of 57 days (47-80
days) and 60 days (50-93 days) for Sparisoma viride and Sparisoma ra-
dians respectively at Panamd (Victor and Wellington, 2000). These es-
timates can explain the ability of reaching long distances in Scarinae.
Notwithstanding, it is paramount that new studies focused in the
identification and description of S. trispinosus larvae to proper evaluate
its dispersal potential and its influence over connectivity patterns.

In a similar way, several studies related the genetic homogeneity to
large PLDs (Rocha et al., 2002; Freitas et al., 2003; Santa Brigida et al.,
2007), adult habitat preferences (Rocha et al., 2002), high mobility
(Santa Brigida et al., 2007; Silva et al., 2015), and/or local coastal
currents (Freitas et al., 2003; Vasconcellos et al., 2008; Silva et al.,
2015). On the other hand, genetic differences were attributed to
Amazon river discharges, isolating Caribbean fauna from Brazilian one
(Rocha et al., 2002; Machado et al., 2017) and ecological factors as-
sociated to distinct local selective pressures (Affonso and Galetti, 2007).

DAPC analysis were not able to define genetic clusters; this outcome
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might happen if i) there is no genetic structure at all, ii) there are not
enough information to disentangle different values of k, or iii) the
method does not apply to analysed data (Jombart et al., 2010). Many
studies using microsatellite markers have used properly DACP analysis
(Rolshausen et al., 2015; Portnoy et al., 2016; Blankenship et al., 2017)
indicating that the method is appropriate to such data. Another hy-
pothesis is that our data set was not sufficient to detect clusters prob-
ably due to low loci number employed. Despite this might be expected,
a POWSIM analysis revealed that our marker had enough power to
detect low genetic structure (~0.01), similar the ones found in this
study, with 80% of confidence depicted by either > and Fisher tests
(Figure Al in Suppl. Mat. A). Therefore, the most probable reason is
that there is no genetically differentiation among geographical lo-
calities studied, although more studies using more (and polymorphic)
microsatellite loci must be done.

Recently, several microsatellites have been identified for threatened
species (Farias et al., 2003; Abdul Muneer et al., 2009), which can be
useful tools in the development of management programs for species
population recovery, by indicating genetic diversity hotspots that can
be used as source for population restocking (Lopera-Barrero et al.,
2013). In our study, we depicted that the genetic structure of S. trispi-
nosus populations varied at different spatial scales. Therefore, addi-
tional effort must be done on the development of species-specific mo-
lecular markers and to fulfil sampling gaps localities in order to
promote genetically-assisted management actions to achieve successful
conservation goals.

5. Conclusion

In this work we found no genetic differences among sampled lo-
calities however, when those samples were gathered into latitudinal
groups (northern vs southern) a subtle but significant genetic sub-
structuring were revealed using Scarus trispinosus, an endemic and en-
dangered parrotfish species at Brazilian coast. It is proposed that a
combination of high local individual admixture favoured by habitat
connectivity drived genetic homogeneity at regional scales while larval
dispersal contributed to heterogeneities observed at large scales main-
taining gene flow through oceanographic currents. Indeed, by com-
paring genetic diversity among studied localities, we found evidences
that high habitat availability provided by a large continental shelf
combined with genetic reservoir inside fully marine protected areas can
contribute significantly to increase genetic diversity in adjacent waters.
Contrastingly, we observed that historically overfished areas harboured
the smaller allelic richness and diversity values, suggesting genetic
erosion due to fishing effect. Although limited, our results can be used
as a baseline assessment for future works aiming conservation and re-
covery of S. trispinosus, however, for a better resolution, it is paramount
to develop new molecular markers or the use of high-throughput mo-
lecular techniques.
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